Diagnosis and Treatment of Forefoot Disorders. Section 1: Digital Deformities

Digital Deformities (Pathway 2)

Digital deformities are among the most common forefoot pathologies encountered by foot and ankle surgeons. These deformities may be either congenital or acquired, with the incidence of digital deformities greater among females than males in almost all age groups (1). Whereas biomechanical dysfunction is usually discussed as the primary cause of digital deformities, these pathologies also may be caused by a variety of other conditions including neuromuscular and arthritic disorders (2-4). The proper identification of the deforming forces and resultant tendon and capsuloligamentous imbalance is critical in determining the treatment plan. Digital deformities may occur as an isolated entity or as a component of other foot and ankle conditions (1, 5).

Significant History (Pathway 2, Node 1)

Patients presenting with digital deformities may either report varying degrees of pain or be asymptomatic. If pain is present, it may occur dorsally, medially, laterally, at the distal end of the toe, or plantar to the respective metatarsal head. Dorsal pain may be secondary to pressure from footwear, whereas pain at the distal end of the toe may be secondary to contracture and the resultant shift of pressure away from the more plantar padded area of the toe.

Patients may report a history of deformity since birth or early childhood. More commonly, patients will have first noticed positional changes of the toe during either early adulthood or in later years. Patients may state either that the extent of deformity of the toe seems to have reached an endpoint, or that they are still noticing a
progressive increase in the deformity. They may complain of difficulty fitting into shoes secondary to the extent of the deformity of the toe. Usually the pain is exacerbated by pressure from footwear, although pain also may be experienced when not wearing shoes. Trauma (eg, a malunited phalangeal fracture) may be an etiology of digital deformity, but this is much less common than congenital deformity or deformities acquired over the years.

Significant Findings (Pathway 2, Node 2)

Initial examination of the patient with a digital deformity may or may not reveal pain upon palpation of the toe and metatarsophalangeal joint (MPJ). Erythema and local inflammation over osseous prominences may be present. Hyperkeratotic lesions are commonly found at the proximal interphalangeal joint (PIPJ), distal interphalangeal joint (DIPJ), distal tip of the toe, or plantar to the respective metatarsal head (Fig. 1). Hyperkeratotic lesions also may be found on the medial and/or lateral aspects of the toe or in the webspace, particularly between the fourth and fifth toes. Alternatively, ulceration of the skin may be observed in these areas, sometimes apparent only after debridement of the overlying hyperkeratosis. Plantar pain in the area of the metatarsal head may be found on palpation of this area secondary to increased retrograde pressure from digital contracture or plantar plate rupture.

The deformity must be evaluated for flexibility or rigidity, as long-standing deformities generally become less flexible. The degree and character of involvement of the DIPJ, PIPJ, and MPJ must be assessed. Because many digital deformities are increased with weightbearing, the patient is examined both seated and standing. Gait analysis also is beneficial.

Clinical Maneuvers (Pathway 2, Node 3)

Various clinical maneuvers are used to assist in the evaluation of digital deformities. A simple range of motion examination will not only help in determining the flexibility of the deformity but also help in evaluating for arthritic changes. The “push-up” test also is very valuable in determining the reducibility of the deformity (1, 2). In addition, the drawer test of the MPJ will assist in identifying sagittal and transverse instability as well as aid in diagnosing the presence of plantar plate pathology (6, 7).

Radiographic Findings (Pathway 2; Node 4)

During the initial evaluation of the patient, standing radiographs are recommended. The views typically include anterior-posterior, oblique, and lateral; these views aid in determining the extent and location of digital contractures as well as MTP joint deformity and/or subluxation. Associated deformities such as hallux valgus or other contributing pathology (eg, cavus foot, metatarsus adductus) to the digital deformity(ies) also can be evaluated (Fig. 2). In addition, the presence or absence of arthritic changes also may be determined from radiographic evaluation, particularly those changes associated with systemic process such as rheumatoid arthritis and the inflammatory arthritides. Although a bone scan, magnetic resonance imaging (MRI), or computed tomography (CT) scan may be ordered, they are rarely needed in the diagnosis of a lesser digital deformity.
Digital Deformities

Significant History
- +/- Pain
- Duration of deformity
- Progressive or static deformity
- Difficulties wearing/fitting shoes
- +/- Pain exacerbated by footwear
- +/- Trauma

Significant Findings

Examination
- +/- Pain upon palpation
- Erythema/local inflammation
- Hyperkeratotic lesions or ulcer
- Plantar MPJ pain
- Flexible/fixed deformity
- DIPJ involvement
- PIPJ involvement
- MPJ involvement
- +/- Increase in deformity with weightbearing

Radiographs
- Digital contractures
- MPJ deformity/subluxation
- Associated hallux valgus or other contributory pathology
- Arthritis

Clinical Maneuvers
- ROM
- “Push-up” test
- Drawer test

Diagnosis

- Hammertoe
- Claw toe
- Mallet toe
- 5th toe deformity
- Crossover 2nd toe deformity
- Other

Differential Diagnosis
- Exostosis
- Bursitis
- Arthritis
- Fracture

Asymptomatic
- Advise - patient education
- Selective prophylactic surgery

Symptomatic
- Surgical treatment
- Nonsurgical treatment

Nonsurgical Treatment
- Padding
- Debridement of hyperkeratotic lesion(s)
- Corticosteroid injections
- Taping
- Footwear changes

Surgical Treatment
- Tenotomy or tendon lengthening
- Capsuloligamentous balancing
- Flexor tendon transfer
- Phalangeal head resection
- Arthrodesis: PIPJ, DIPJ
- Metatarsal osteotomy
- Phalangeal base resection
- Exostectomy
- Amputation (partial or complete)
- +/- Correction of associated pathology

Continued Symptoms and/or Recurrent Deformity
- Nonsurgical treatment - (see Node 9)
- Surgical treatment - (see Node 10)
- Amputation

PATHWAY 2
Digital deformities are associated with a variety of hyperkeratotic lesions, clavi, or ulcerations including (A) dorsally at PIPJ or DIPJ, (B) distal tip of toes, or (C) medial or lateral condylar surfaces at DIPJs or PIPJs, where adjacent toes rub each other.

Digital deformities are generally associated with foot pathologies that result in MTP joint instability and digital contractures. Shown here: (A) hallux varus with digital adductus, (B) hallux valgus, (C) rheumatoid arthritis, and (D) pes cavus.
After consideration of the history, examination, radiography, and clinical maneuver results, diagnosis of the type and extent of digital deformity can be made. Deformities of the lesser toes are defined classically as hammertoe, clawtoe, and mallet toe (Fig. 3). Although these deformities are all very similar to each other, a few minor differences exist. Hammertoe refers to the deformity that consists of an extension contracture at the MPJ, flexion contracture at the PIPJ, and hyperextension at the DIPJ. Clawtoe deformity exhibits an extension contracture at the MPJ and a flexion contracture at both the PIPJ and DIPJ. A toe whose only deformity consists of a flexion contracture at the DIPJ is termed a mallet toe.

There also are separate and distinct deformities involving the second toe and fifth toe. When an extension contracture is combined with medial deviation (subluxation) at the level of the second MPJ, a “crossover” second toe deformity results (6, 7). This deformity often is combined with a hallux valgus deformity. Pain in and around the second MPJ that occurs before significant subluxation is seen is referred to as “pre-subluxation syndrome.” Adduction or abduction digital deformities may involve all lesser MTP joints or, in some cases, divergent digital contractures are seen (Fig. 4). Fifth toe pathology may include deformity in multiple planes (adductovarus deformity), or significant overlap of the fifth toe over the fourth toe may be seen. These toe deformities of the fifth toe may be congenital in nature; other congenital deformities include polydactyly, syndactyly, clinodactyly and macrodactyly (Fig. 5).

![Diagnosis (Pathway 2, Node 5)](image-url)
Differential Diagnosis (Pathway 2, Node 6)

Other local pathologies besides digital deformity or contracture may give rise to symptoms in a lesser toe. A phalangeal exostosis may be of sufficient size to cause pain from footwear pressure or may result in impingement on an adjacent toe. These may be associated with a hyperkeratotic lesion and may be seen with or without other digital deformity. Bursitis may be present at any area of increased pressure secondary to exostosis or deformity. Many forms of arthritis, particularly rheumatoid arthritis and some of the seronegative arthritides, may manifest themselves in symptoms at the MPJ and PIPJ or DIPJ. A fracture must be ruled out, especially in the setting of acute onset of pain involving injury.

Asymptomatic Digital Deformity (Pathway 2, Node 7)

In the setting of a digital deformity that is asymptomatic, advising the patient on the prevention of future problems (eg, changes in footwear) may be all that is necessary. At times, prophylactic correction of digital deformities in the patient with diabetic peripheral neuropathy may be undertaken to prevent future ulceration.

Symptomatic Digital Deformity (Pathway 2, Node 8)

Symptomatic digital deformities may be treated nonsurgically or surgically, depending on multiple factors. These include degree of deformity, duration and severity of symp-
toms, previous treatment, associated medical conditions, and ability to perform work duties comfortably.

Nonsurgical Treatment Options (Pathway 2, Node 9)

Nonsurgical treatment is often the initial treatment choice for the symptomatic digital deformity. Various padding techniques exist, serving to cushion or offload pressure points that may involve both the affected toe(s) as well as its respective metatarsal head plantarly. Orthotic devices or shoe insole modifications using a metatarsal pad may offer relief of excessive metatarsal head pressures. Debridement of associated hyperkeratotic lesions usually is effective in helping to reduce symptoms. If local inflammation or bursitis exists, a corticosteroid injection into the affected area may be beneficial. Taping to reduce and splint flexible deformities may be performed, especially in the setting of an early crossover second toe deformity. Last but not least, footwear changes such as a wider and/or deeper toe box may be used to accommodate the deformity and decrease shoe pressure over osseous prominences.

Surgical Treatment Options (Pathway 2, Node 10)

The surgical treatment of digital deformities includes a spectrum of soft tissue and osseous procedures. The degree and flexibility of the deformity along with any associated pathology determine the surgical procedure(s) to be performed.

When the deformity is manually reducible, tenotomy or tendon lengthening at the level of the MPJ, PIPJ, or DIPJ may be sufficient for deformity correction; however, this may require combining with capsular and/or ligamentous release (or reefing), especially at the level of the MPJ (8-10). In some cases, phalangeal head resection (partial or complete) and/or flexor tendon transfer also may be necessary (11).

When the deformity is only manually semi-reducible or rigid, both osseous and soft tissue procedures often are performed in combination. Osseous procedures of the toe include phalangeal head resection (with or without implant) and arthrodesis of the PIPJ and DIPJ (3, 11-24) (Fig. 6). Sometimes metatarsal osteotomy, partial metatarsal head resection, or phalangeal base resection may be required to achieve complete correction of the digital deformity, especially at the level of the MPJ (1, 2, 25-27) (Fig. 7). Soft tissue procedures are commonly utilized to augment osseous procedures in this patient population; soft tissue procedures include all of the aforementioned procedures for flexible deformities. Exostectomy also may be beneficial, particularly in addressing hyperkeratotic lesions along the medial or lateral aspects of the toe (27, 28). Partial amputation of the toe may be indicated in some cases, especially in conditions involving the fifth toe. In selected cases, complete amputation of a lesser toe may be considered to allow shoe fitting, such as in the coexistence of second toe deformity and hallux valgus deformity in an elderly patient (29).

Correction of associated conditions may be indicated in the surgical care of some digital deformities. This is especially true in crossover second toe deformity, where hallux valgus deformity often is seen concurrently and may influence attempts at correction of the second toe deformity (30).
Surgical repair of associated tears of the plantar plate also has been advocated (6) (see Section 2. Central Metatarsalgia, Fig. 8). In addition, correction of other forefoot, midfoot, or hindfoot conditions contributing to the formation of digital deformity may be indicated.

Continued Symptoms (Pathway 5, Node 11)

Treatment of the patient who continues to experience symptoms after surgical care of a digital deformity may require a variety of revisional surgical techniques and/or nonsurgical measures. In some cases, recurrence of the original deformity or migration of phalangeal segments occur as a complication of the original repair. Revisional surgery alternatives are similar to the above for original procedural selection.

References