Evaluation of A Novel Approach to Hallux Valgus Treatment: Triplanar Deformity Classification, Non-Compression Fixation & Immediate Weight-Bearing

Daniel Hatch DPM¹, Paul Dayton DPM², Bret Smith DO³, Robert Santrock MD⁴ 1. North Colorado PM&S Residency, Greeley, CO 2. Des Moines University College of Podiatric Medicine and Surgery, Des Moines, IA 3. Palmetto Health-USC Orthopedic Center, Columbia, SC 4. Department of Orthopaedics, West Virginia School of Medicine, Morgantown WV

Statement of Purpose

The objective of this study was twofold:

- 1. Develop a triplanar classification system to characterize the 3D hallux valgus (HV) deformity
- 2. Perform an early evaluation of a novel procedure that allows for triplanar correction and immediate weightbearing (WB) after Lapidus arthrodesis

Literature Review

Current Hallux Valgus Treatment Paradigm

- Current HV classifications primarily severity-based, relying on 2D transverse-plane measures in AP x-rays
- Most HV procedures are transverse-plane osteotomies • Demonstrating 30-78% radiographic recurrence^{1,2}
- Recent CT studies indicate 87% bunions are 3-plane deformities, with metatarsal frontal-plane rotation³
- Failure to correct metatarsal frontal-plane rotation associated with increased recurrence rates:
 - 10.0X if sesamoids not corrected⁴
 - 12.7X if rotation uncorrected ("lateral round sign")⁵

Need for a triplanar HV classification

Triplanar 1st TMT Fusion & Immediate Weight-Bearing

- TMT is convenient site for 3-plane anatomic correction at apex of deformity (anatomic CORA)
- Traditional limitation is inability to WB early
 - Recent studies challenge WB standards following Lapidus, with limited WB at 2-3 wks^{6,7}
- Recently developed multiplanar plating constructs rely on relative stability & secondary ("biologic") healing^{8,9}
 - → New constructs may allow for immediate WB

Triplanar Hallux Valgus Classification ¹⁰				
Class	Anatomic Findings	MTP Joint Status	Treatment Recommendation	
1	 Increased HVA and IMA No 1st metatarsal pronation evident on AP and sesamoid axial radiograph Sesamoids may be subluxed 	 No clinical or radiographic evidence of DJD 	 Transverse plane corrective procedure +/- Distal soft tissue procedures 	
2A	 Increased HVA and IMA 1st metatarsal pronation evident on AP and sesamoid axial radiograph No sesamoid subluxation 	 No clinical or radiographic evidence of DJD 	 Triplane correction with 1st met. supination 	
2B	 Increased HVA and IMA 1st metatarsal pronation evident on AP and sesamoid axial radiograph With sesamoid subluxation 	 No clinical or radiographic evidence of DJD 	 Triplane correction with 1st met. supination + Distal soft tissue procedures 	
3	 Increased HVA and IMA >20 degrees metatarsus adductus (MTA) 	 No clinical or radiographic evidence of DJD 	 Met. 2 & 3 transverse plane correction. Followed by 1st met. correction (per class 1 & 2 recommendations) 	
4	 Increased HVA and IMA +/- 1st metatarsal pronation 	 Clinical and/or radiographic evidence of DJD 	 First MTP Arthrodesis. Resectional/implant arthroplasty may be utilized 	

- Design: Retrospective, multi-center consecutive series with **2 mini-plate** multiplanar fixation (without interfragmentary compression)
- Surgical Procedure: Instrumented 3-plane, 1st TMT correction
- Exclusion: Class 3 & 4 HV patients
- Post-op Regimen: Immediate WB as tolerated in post-op boot • HV Cohort: 49 patients, **4.3±1.0 mo follow up** (min 3 mo) Data Analysis: Radiographic measures (IMA, HVA, TSP, Lateral Round Sign) and reported complications

Methods

Triplanar Classification (pre-op): 6% Class 1, 43% Class 2A, and 51% Class 2B HV patients (note: Class 3 & 4 excluded)

Delayed wound healing/swelling	2 (4%)
Broken screw in fixation construct	1 (2%)
Hardware removal for soft-tissue irritation	1 (2%)
Undercorrection (IMA>10° or HVA>20°)	2 (4%)
Non-union	0 (0%)
Table 1. Complication rates.	

Results

Fig. 1 Post-op 3-plane x-rays after triplanar correction.

Fig 2. Anatomic 3-plane radiographic measures. *p<0.001

Discussion

This study presented a novel triplanar approach to the classification and treatment of the HV deformity Results demonstrate that triplanar HV deformity consistently corrected with triplanar 1st TMTJ fusion Elimination of lateral round sign (met. frontal-plane

- - rotation) in 95.9% patients

• Three-plane correction maintained at 4 mo Triplanar classification provides framework for 3-plane assessment and treatment

Immediate WB is possible after 1st TMT fusion Minimal complications observed, no non-unions \bullet Consistent with previous studies showing excellent results with early (2-4 wk) WB^{6,7} • 2 mini-plate 90-90 construct provides multiplanar,

- relative stability
- Allows WB to stimulate biological healing process⁹
- Prior biomechanical results demonstrate superior to anatomic plate & compression screw⁸

References

- Bock P, Kluger R, et al.. J Bone Joint Surg Am. 2015; 97(15):1238-1245.
- Jeuken RM, Schotanus MGM, et al. Foot Ankle Int. 2016; 37(7):687-695.
- Kim Y, Kim JS, et al. Foot Ankle Int. 2015; 36(8):944-952.
- Okuda R, Kinoshita M, et al. J Bone Joint Surg Am. 2009; 91(7):1637-1645.
- Okuda R, Kinoshita M, et al. J Bone Joint Surg Am. 2007; 89(10):2163-2172.
- Sorensen MD, Hyer CF, Berlet GC. Foot Ankle Spec. 2009; 2:227–233. 6.
- Prissel M, Hyer CF, et al. J. Foot Ankle Surg. 2016; 55:226–229.
- Dayton, P, Ferguson J, et al. J. Foot Ankle Surg. 2016; 55:567–571.
- Perren SM. J.Bone Joint Surg.(Br) 84B: 1093-1110, 2002. 9.
- 10. Dayton (editor). Evidence-Based Bunion Surgery. Springer, 1st Ed. 2018.