INTRODUCTION

The average intramedullary diameter of the proximal phalanges of the foot has not been well documented in the literature. This dimension has important implications for surgical fixation devices, such as intramedullary screws for the correction of hammertoes. By design, intramedullary fixation devices rely on endosteal fit to provide stability.
The precise intramedullary diameter is not readily identifiable on plain The precise intramedulary diameter is not readily identifiable on plain
radiographs. A better understanding of the average intramedullary diameter of the proximal phalanges of the foot can assist surgeons with surgical planning for appropriate screw diameter selection to provide more satisfactory patient outcomes.

METHODS

Twenty below-knee cadaveric specimens were dissected to expose each proximal phalanx. A sagittal saw was used to transect the diaphysis at its narrowest portion. The dorsal to plantar and medial to lateral diameters were measured using a digital manometer.

Table 1. Specimen Characteristics $(\mathbf{n}=\mathbf{2 0})$	
Right-sided	12
Left-sided	8
Male	11
Female	9
Average Age at Death	72.1
Average BMI at Death	22.0

RESULTS

The average diameter dorsal to plantar for each digit was 6.25 ± 2.24 $\mathrm{mm}, 3.61 \pm 1.25 \mathrm{~mm}, 2.94 \pm 0.70 \mathrm{~mm}, 2.72 \pm 0.77 \mathrm{~mm}$, and $2.48 \pm$ 0.80 mm , respectively. The average diameter medial to lateral for each
digit was $7.83 \pm 2.13 \mathrm{~mm}, 3.08 \pm 0.93 \mathrm{~mm}, 2.47 \pm 0.74 \mathrm{~mm}, 2.33 \pm$ 0.73 mm , and $2.62 \pm 0.69 \mathrm{~mm}$, respectively.

Figure1: A manomete
was used to measure was used to measure
the narrowest portion of the prowimal
phalanx. phalanx.

		1			2			3			4			5	
	DP	ML	Avg												
Minimum (mm)	2.76	4.07	3.43	1.25	1.25	1.25	1.21	0.85	1.03	1.52	1.27	1.49	1.32	1.25	1.29
Maximum (mm)	10.21	12.01	9.78	5.95	5.44	5.70	4.08	3.96	3.57	4.43	3.85	4.14	4.82	3.97	3.77
Average (mm)	6.25	7.83	7.04	3.61	3.08	3.35	2.94	2.47	2.71	2.72	2.33	2.52	2.48	2.62	2.55
Standard Deviation (mm)	2.24	2.13	1.95	1.25	0.93	1.04	0.70	0.74	0.66	0.77	0.73	0.71	0.80	0.69	0.63
DP= Dorsal to Plantar; ML= Medial to Lateral															

DISCUSSION

Published data on the intramedullary diameter of the phalanges is difficult to find. Dipaolo et al looked at the diameter of lesser phalanges for tendon transfer stability. However, they measured the full width at the metaphyseal-diaphyseal junction. The intramedullary diameter was not mentioned. In our study, the lesser phalanges demonstrated smaller diameters more consistently, diameter overall and a more elliptical shape with slightly greater width than height. This may be more amenable to two side by side screws. Understanding the intramedullary diameters of the proximal phalanges of the foot is a valuable tool when utilizing intramedullary surgical stabilization. Data collected from these 20 cadaveric specimens can provide surgeons with a general expected intramedullary diameter during surgical planning.

references

ORTHOPEDIC
FOOT \& ANKLE CENTER

