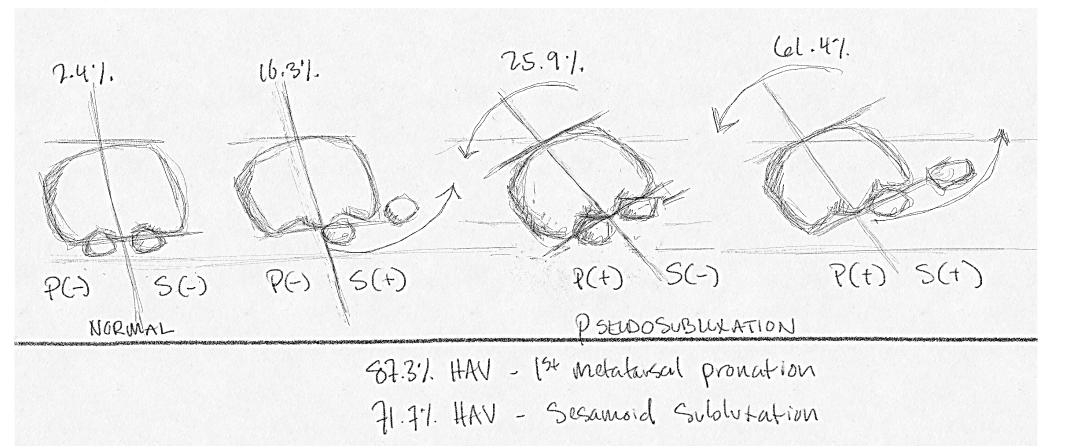





# Preoperative Evaluation of Sesamoid Position in Patients with Hallux Valgus Deformity via Diagnostic Ultrasound: A Feasibility Study

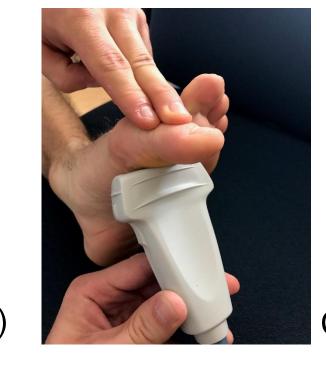



John Marshall, BA; Lowell Weil, Jr., DPM, MBA, FACFAS; Erin Klein, DPM, MS, FACFAS; Robert Joseph, DPM, PhD, FACFAS; Adam Fleischer, DPM, MPH, FACFAS

Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, IL

# Introduction and Methodology

- Hallux abducto valgus (HAV), or "bunion", is one of the most common deformities of the foot and ankle with prevalence of 23% in groups aged 18-65 y/o and 36% in groups over the age of 65 y/o.
- Basic components of the deformity consistent of first metatarsal varus (medial deviation), hallux valgus (lateral deviation), and sesamoid displacement/subluxation. Per Kim et al., 87% involve 1st metatarsal pronation and 72% involve sesamoid subluxation.
- Our initial goal was to establish a protocol utilizing ultrasound (US) to quickly, easily, and accurately image the 1<sup>st</sup> MTPJ and sesamoid apparatus that can differentiate a true sesamoid subluxation (when lateral release is warranted) from a pseudosubluxation preoperatively (when lateral release may actually be harmful).
- Protocol:
- US of 1<sup>st</sup> MTP in NP
- US of 1<sup>st</sup> MTP in maximal DF\*
- US of 1<sup>st</sup> MTP in maximal PF
- 15 30 sec dynamic video clip of 1st MTP ROM\*
- Sesamoid position was assessed in relation to the 1<sup>st</sup> metatarsal head and crista.
- This position was then compared to the sesamoids on preoperative radiographs and positions were determined utilizing Hardy and Clapham's method.




## Procedure

- During preoperative visit patients who agreed to take part in the study and were scheduled for corrective HAV at the Weil Foot and Ankle Institute underwent sonographic imaging of the 1<sup>st</sup> MTPJ (Sonosite M-Turbo, 18 MHz).
- Sesamoid position was determined in real-time using US and later qualitatively compared to preoperative radiographs (AP and axial sesamoid)

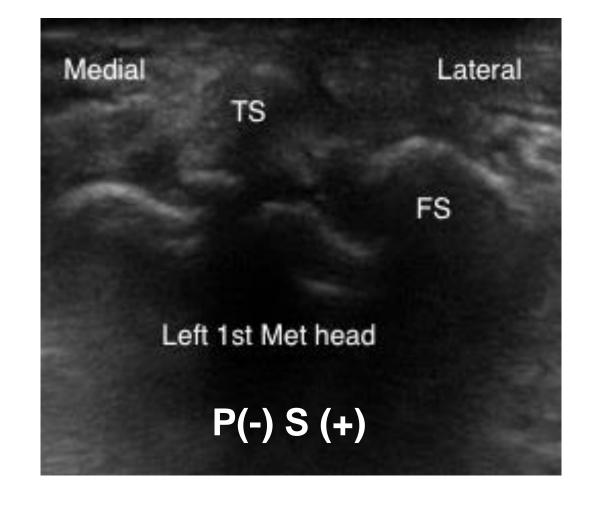


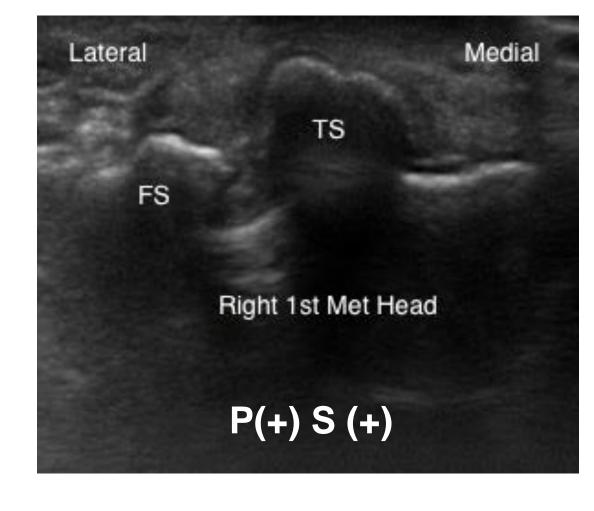




A) 1<sup>st</sup> MTPJ Neutral position
B) 1<sup>st</sup> MTPJ in maximal dorsiflexion
C) 1<sup>st</sup> MTP in maximal plantarflexion

#### Results


- Total of 10 patients were evaluated, with 8 participants having corresponding imaging data available for comparison.
- The WB AP radiographs showed an equal to or greater severity of potential sesamoid subluxation than US and/or SA images.


| Patient # | US sesamoid position | AP sesamoid position | SA sesamoid position |
|-----------|----------------------|----------------------|----------------------|
| 1         | 3                    | 4                    | ~3-4                 |
| 2         | R: 2, L: 1-2         | R: 3-4, L: 2         | R: 2-3, L: 1-2       |
| 3         | 4                    | 4                    | 4                    |
| 4         | R: 4-5, L: 3         | R: 5, L: 4           | R: 4-5, L: 3         |
| 5         | 2                    | 3                    | 2-3                  |
| 6         | 1                    | 2                    | N/A                  |
| 7         | 2                    | 3                    | N/A                  |
| 8         | 3                    | 5                    | N/A                  |

Anterior – Posterior (AP) Radiographs



Ultrasound (US) images





Sesamoid Axial (SA) Radiographs





#### Discussion

- An accurate understanding of sesamoid position and axial rotation of the 1<sup>st</sup> metatarsal is very important in the preoperative assessment of the HAV patient.
- According to Kim et al. approximately 28% of HAV patient's do not show sesamoid subluxation, and thus in a quarter of HAV patients lateral sesamoid release might be contraindicated and may cause more harm than good.
- With some studies showing up to 78% recurrence rates and up to 25% patient dissatisfaction post HAV correction, proper procedure selection including when to add a lateral soft tissue release needs to be more fully understood.
- In this preliminary work, we developed a protocol using US that was quick (avg. time was less than 3 min.) and accurate for differentiating true subluxation from a pseudosubluxation.
- Future work will want to:
  - Add a larger number of participants with varying foot-types.
  - Further evaluation of the US data include metatarsal pronation angle analysis.
  - Add reliability testing for our new technique for experienced and inexperienced raters (i.e., reliability between and within raters).
  - Compare our ultrasound grading system to intra-operative sesamoid inspection and axial sesamoid radiographs.

### References

metatarsal arthrodesis for hallux abducto valgus: a case series and critical review of the literature. J Foot Ankle Surg 2013;52(3):348-354

2. Mashima N, Yamamoto H, Tsuboi I, et al. Correction of hallux valgus deformity using the center of rotation of angulation method. J Orth Sci 2009;14(4):377-384

3. Paley D, Herzenberg JE, eds. *Principles of Deformity Correction*. Springer-Velag, Berlin, 2005

4. Scranton PE Jr, Rutkowski R. Anatomic variations in the first ray- part 1: anatomic aspects related to bunion surgery. Clin Orthop Relat Res 1980;(151):244-255.

5. Mizuno S, Sima Y, Yamaxaki K. Detorsion osteotomy of the first metatarsal bone in hallux valgus. J Jpn Orthop Assoc 1956;30:813-819.

6. Okuda R, Yasuda T, Jotoku T, Shima H. Proximal abduction-supination osteotomy of the first metatarsal for adolescent hallux valgus: a preliminary report. J Orthop Sci 2013;18(3):419-425

7. Dayton P, Kauwe M, DiDomenico L, Feilmeier M. Quantitative Analysis of the Degree of Frontal Rotation Required to Anatomically Align the First Metatarsal Phalangeal Joint During Modified Tarsal-Metatarsal Arthrodesis Without Capsular Balancing J Foot Ankle Surg 2016;55(2):220-235

9. Mortier JP, Bernard JL, Maestro M. Axial rotation of the first metatarsal head in a normal population and hallux valgus patients. Orthop Traumatol Surg Res 2012;98(6):677-683.

10. Catanese D, Popowitz D, DPM, Gladstein A.Measuring Sesamoid Position in Hallux Valgus. When Is the Sesamoid Axial View Necessary? Foot & Ankle Specialist 2014: 7(6): 457-

8. Hardy RH, Clapham JCR. Observations on hallux valgus. J Bone Joint Surg 1951;33(3):376-391

11. Talbot KD, Saltzman CL. Assessing sesamoid subluxation: how good is the AP radiograph? Foot Ankle Int 1998;19(8):547-554

12. Dayton P, Feilmeier M, Hirschi J, et al. Observed changes in radiographic measurements of the first ray after frontal plane rotation of the first metatarsal in a cadaveric foot model. Foot Ankle Surg 2014;53(3):274-278

13. Kim Y, Kim JS, Young KW, et al, A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the First Metatarsal in CT Scans Foot & Ankle International 2015, Vol. 36(8) 944–952

14. Symeonidi P, Zikoudis D. Ultrasound-guided injections in the treatment of stress fractures of the hallucal sesamoids. AOFAS 2015.

15. Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. Journal of Foot and Ankle Research 2010, 3:21

## Acknowledgments

 This work was partially funded by a grant (2T35DK074390) from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). NIDDK had no role in the study design, data collection or analysis.