Effect of Venous Thromboembolic Prophylaxis on Surgical Incision Healing

Rebecca D. Stack, DPM¹; Brett D. Sachs, DPM, FACFAS²; Dustin Kruse, DPM, FACFAS^{2,3}; Paul Stone, DPM, FACFAS^{2,4} 1. Resident, Highlands-Presbyterian St. Luke's Podiatric Surgical Residency Program; 2. Faculty, Highlands-Presbyterian St. Luke's Podiatric Surgical Residency Program; 3. Director of Research, Highlands-Presbyterian St. Luke's Residency Program; 4. Program Director, Highlands-Presbyterian St. Luke's Residency Program

Introduction

Although the risk of a thrombotic event following foot and ankle surgery is lower than other orthopedic procedures, it remains a concern among physicians. The use of venous thromboembolic prophylaxis in foot and ankle surgery remains controversial due to a low prevalence of deep vein thrombosis (DVT) and pulmonary embolism (PE)¹⁻⁴. When the risk for DVT or PE is high, prophylaxis should be considered ²⁻⁵. The purpose of this study is to compare venous thromboembolic prophylactic therapies following a first metatarsocuneiform joint (1st TMTJ) arthrodesis procedure, and specifically look to determine rivaroxaban's affect on wound healing complications in the post-operative period.

Literature Review

There are multiple forms of prophylaxis that can be utilized including mechanical (sequential compression devices (SCDs) and compression stockings) and pharmaceutical prophylaxis, however use of prophylaxis does not come without risks. One potential risk in studies pertaining to hip and knee surgery includes the potential increase in wound healing complications with use of rivaroxaban. Some studies suggest that the use of rivaroxaban for DVT/PE prophylaxis following knee and hip surgery results in increased risk for wound healing complications. Jameson (2012) and Zou (2014) compared effect of Low-Molecular-Weight Heparin with rivaroxaban and both found a significantly higher wound complication rate for those who received rivaroxaban⁶⁻⁷. Colleoni (2018) compared use of aspirin with rivaroxaban following knee arthroplasty and found a trend in local wound complications with those taking rivaroxaban but this did not reach statistical significance⁸. However, this potential complication has not been studied in foot and ankle surgery.

Financial Disclosure: None Conflict of Interest: None

This research was supported (in whole or in part) by HCA and/or an HCA affiliated entity. The views expressed in this publication represent those of the author(s) and do not necessarily represent the official views of HCA or any of its affiliated entities.

Methods

- Retrospective review of consecutive patients who underwent a 1st TMTJ arthrodesis over 2 years.
- The 1st TMTJ arthrodesis procedure was chosen due to similar dissection, fixation techniques and post-operative course between all patients.
- Patients were separated in 4 groups based on venous thromboembolic prophylaxis: Group 1 Mechanical prophylaxis, Group 2- aspirin, Group 3- enoxaparin, Group 4- rivaroxaban
- Refer to Charts 1 and 2 for data collected
- The main outcome variable was wound healing complications, including dehiscence and infections.
- Statistical Analysis:
 - Cochran-Mantel-Haenszel Chi-Square Analysis was performed to compare categorial variables (gender, smoking status, diabetes, dehiscence and DVT/PE).
 - One-Way Anova Test performed to compare continuous variables (age, BMI). _
 - Odds ratio analysis performed to compare prophylactic treatments (groups 2-4) to the mechanical prophylaxis group.

Table 1: Cochran-Mantel-Haenszel Chi-Square Test								
		Mechanical	Aspirin	Enoxaparin	Rivaroxaban	Total	Percentages	Chi Square Value
Gender	Male	16	32	7	18	73	87.95%	0.284
	Female	1	5	3	1	10	12.05%	
Smoking Status	Never	12	26	0	11	49	59.04%	0.681
	Quit	5	9	2	5	21	25.30%	
	Current	0	2	8	3	13	15.66%	
Diabetes	No	17	37	9	17	80	96.39%	0.174
	Yes	0	0	1	2	3	3.61%	
Dehiscence	No	15	32	10	13	70	84.34%	0.145
	Yes	2	5	0	6	13	15.66%	
DVT/PE	No	16	37	10	18	81	97.59%	0.145
	Yes	1	0	0	1	2	2.41%	

Table 2: One-way Anova Test							
		Mechanical	Aspirin	Enoxaparin	Rivaroxaban	Total	One-way ANOVA
Age	Mean (SD)	42.88 (11.59)	50.03 (11.99)	45.70 (8.58)	47.95 (16.55)	47.57 (12.85)	0.137
	Range	23-60	22-70	29-57	22-74	22-74	
BMI	Mean (SD)	25.50 (4.90)	26.43 (3.82)	32.06 (6.69)	29.36 (7.49)	27.59 (5.75)	0.005
	Range	19.9-40.2	18.6-38.14	24.4-40.6	19.0-50.3	18.6-50.3	

Table 3: Odds Ratio Estimates for Wound Complications						
Type of Prophylaxis	of Prophylaxis Point Estimate 95% Confidence Limits					
Aspirin vs Mechanical	1.172	0.203	6.749			
Enoxaparin vs Mechanical	<0.001	<0.001	>999.999			
Rivaroxaban vs Mechanical	3.462	0.593	20.206			

- diabetes between each group.
- option.

Analysis and Discussion

Previous research involving total knee and hip arthroplasties have shown a potential correlation between rivaroxaban and wound healing complications in the post operative period. This study has shown there may be potential relationship between use of rivaroxaban and wound healing complications after 1st metatarsocuneiform arthrodesis, although this did not reach statistical significance. Rivaroxaban's association with wound healing complications remains somewhat controversial. Further studies, including prospective studies with larger patient populations and studies involving other foot and ankle procedures are needed.

and ankle surgery. Foot & Ankle Int. 40(1):98-104, 2019.

- Spec. 11(5):444-450, 2018.
- after foot and ankle surgery. Foot Ankle Spec. 12(3):218-227, 2019.
- rivaroxaban administration. J Bone Joint Surg Am. 94:1554-1558, 2012.

analysis included in this study.

Results

83 patients met inclusion criteria, consisting of 73 (87.95%) female and 10 (12.05%) male. Patients were divided into 4 groups: Group 1 (17 patients), Group 2 (37 patients), Group 3 (10 patients), and Group 4 (19 patients). Data for each group is presented in Tables 1 and 2, and in the chart.

There was no significant difference in age, BMI, gender, smoking status, or

A significant difference was noted between the BMI of Group 1 (Mean 25.50) and 3 (Mean 32.06) (P=.0071), and Group 2 (Mean 26.43) and 3 (Mean 32.06) (P = 0.0011). There was no significant difference between Group 4 and all groups.

Odds ratio analysis (Table 3) performed between comparing group 1 to groups 2-4 showed an increased relationship between wound complications with Xarelto (3.462) however this did not reach significance when compared with the odds ratios of the other prophylaxis groups. The odds ratio comparing aspirin (1.172), and enoxaparin (<.001) to mechanical prophylaxis did not show a significant relationship with wound healing complications. Due to the rare event with low sample size, significant differences were not achieved for each prophylactic

References

Richey JM, Weintraub MLR, Schuberth JM. Incidence and risk factors of symptomatic venous thromboembolism following foot

Heijboer RRO, Lubberts B, Guss D, Johnson AH, DiGiovanni CW. Inncidence and risk factors associated with venous thromboembolism after orthopaedic below-knee surgery. JAm Acad Orthop Surg, 27:e482-e490, 2019.

Mangwani J, Sheikh N, Cichero M, Williamson D. What is the evidence for chemical thromboprophylaxis in foot and ankle surgery? Systematic review of the English literature. *The Foot*, 25:173-178, 2015.

Matthews JH, Terrill AJ, Barwick AL, Butterworth PA. Venous thromboembolism in podiatric foot and ankle surgery. Foot Ankle

5. Huntly SR, Abyar E, Lehtonen EJ, Patel HA, Naranje S, Shah A. Incidence of and risk factors for venous thromboembolism

6. Jameson SS, Rymaszewska M, James P, Serrano-Pedraza I, Muller SD, Hui ACW, Reed MR. Wound complications following

7. Zou Y, Tian S, Wang Y, Sun K. Administering aspirin, rivaroxaban and low-molecular-weight heparin to prevent deep venous thrombosis after total knee arthroplasty. *Blood Coag and Fibrinolysis*. 25:660-664, 2014.

Colleoni JL, Ribeiro FN, Castro Mos PA, Reis JP, Rosa de Oliveira H, Miura BK. Venous thromboembolism prophylaxis after total knee arthroplasty (TKA): aspirin vs. rivaroxaban. Rev Bras Ortop. 53(1):22-27, 2018.

Acknowledgments

A special thank you to Oliwier Dziadkowiec and Brendon Cornett for contributing to the statistical