A critical evaluation of the treatment of ankle fractures presenting to the emergency department of an urban Level-1 trauma center. Jenna M. Lohre, DPM^a, Rebecca V. DeSimone, DPM^a, Andrew J. Meyr, DPM FACFAS^b, and Laura E. Sansosti, DPM AACFAS^c

^aResident, Temple University Hospital Podiatric Surgical Residency Program, Philadelphia, Pennsylvania ^bClinical Associate Professor and Residency Program Director, Department of Podiatric Medicine and Temple University Hospital, Philadelphia, Pennsylvania (AJMeyr@gmail.com)* ^cClinical Assistant Professor, Departments of Podiatric Biomechanics and Surgery, Temple University School of Podiatric Medicine, Philadelphia, Pennsylvania *Please don't hesitate to contact AJM with any questions/concerns. He's happy to provide you with a .pdf of this poster if you email him.

Statement of Purpose and Literature Review

Ankle fractures are one of the most common traumatic lower extremity osseous injuries presenting to emergency departments in the US. As such, the diagnosis and treatment of ankle fractures forms an important aspect of the education of podiatric students and residents. It also represents a potential opportunity for the assessment of performance improvement/quality improvement initiatives for our profession [1-4].

The objective of this investigation was to determine which patient demographic factors might be associated with disparities in the treatment of rotational ankle fractures presenting for initial evaluation to the emergency department of an urban Level-1 trauma center.

Methodology

Following IRB approval, a retrospective chart review was performed of 100 consecutive subjects presenting to the emergency department of an urban US Level-1 trauma center with a rotational ankle fracture. The cohort was subsequently divided into those who underwent ORIF versus those who did not, and into those who were admitted for the ORIF versus those who underwent an outpatient procedure. Additional comparisons were performed of the inpatient subjects regarding factors potentially affecting time to operative intervention and total length of stay. Continuous data is reported as a mean \pm standard deviation (range) and was compared with an unpaired students t-test. Categorical data is reported as a frequency count and was compared with the chi-square test and odds ratio analysis.

Demographic Age (years)	ORIF (n = 41) 47.68 ± 13.93 (21-82)	No ORIF $(n = 54)$ 47.39 ± 15.33 (18-74)	Statistical Comparison P = 0.9235	Demographic	Inpatient ORIF (n = 19) 50 11 + 12 51 (31-82)	Outpatient ORIF (n = 22) 45 59 + 15 02 (21-71)	Statistical Comparison	Demographic	Time to $OR > 7$ days (n = 15) 43 67 + 15 94 (21-68)	Time to $OR \le 7$ days (n = 21) 49 67 + 11 98 (31,82)	Statistical Comparison	Demographic	Total LOS > 3 days (n=6) 58.33 ± 12.20 (48.82)	Total LOS \leq 3 days (n=17)	Statistical Comparison	Demographic	Total Post-Op LOS > days (n=5) 53.6 ± 4.56 (48-58)	2 Total Post-Op LOS ≤ days (n=18) 46.78 + 15.83 (24-82)	2 Statistical Comparison	Demographic	Podiatry ORIF ($n = 28$)	Orthopedic ORIF (n = 12)
Conder	24 (58 5) Famala	24 (63) Female	P = 0.822.		50.11 ± 12.51 (51 62)	+5.57 ± 15.02 (21 +1)	P 0.0007	Age (years)	45.07 ± 15.74 (21-00)	47.07 ± 11.76 (31-62)	1 - 0.2000	Age (years)	38.33 ± 12.29 (40-82)	44.71 ± 13.57 (25-08)	r – 0.424	Age (years)	55.0 ± 4.50 (40-50)	40.76 ± 13.65 (24-62)	1 - 0.5500	Age (years)	40.37 ± 14.08 (24-82)	43.07 ± 14.00 (21-00
D	17 (41.5) Male	20 (37) Male	0.830 (0.333-2.072)	Gender	12 (63.1) Female 7 (36.9) Male	12 (54.5) Female 10 (45.5) Male	P = 0.810; 1.429 (0.342-6.059)	Gender	6 (40) Female 9 (60) Male	14 (66.7) Female 7 (33.3) Male	P = 0.213; 0.333 (0.066-1.604)	Gender	4 (66.7) Female 2 (33.3) Male	10 (58.8) Female 7 (41.2) Male	P = 1.000; 1.400 (0.144-15.309)	Gender	4 (80) Female 1 (20) Male	10 (55.5) Female 8 (44.5) Male	P = 0.636; 3.200 (0.232-90.998)	Gender	18 (64.3) Female 10 (35.7) Male	6 (50) Female 6 (50) Male
Kace	20 (48.8) Black 12 (29.3) White	26 (48.1) Black 8 (14.8) White	Black p = 1.000; 1.026 (0.420-2.504)	Race	12 (63.1) Black	8 (36.3) Black 8 (36.3) White	Black p = 0.162; 3.000 (0.706-13.265)	Race	6 (40) Black	13 (62) Black	Black p = 0.338; 0.410 (0.083-1.939)	Race	5 (83.3) Black	9 (53) Black	Black p = 0.410; 4.444 (0.340-122.979)	Race	4 (80) Black	10 (55.6) Black	Black p = 0.636; 3.200 (0.232-90.998)	Race	15 (53.6) Black	5 (41.7) Black
	9 (21.9) Other	20 (37.1) Other	White p = 0.145; 2.379 (0.783-7.350)		3 (15.9) Other	6 (27.4) Other	White p = 0.465; 0.467 (0.091-2.288)		5 (33.3) Other	4 (19) Other	White p = 0.893; 1.545 (0.249-9.742)		0 (0) Other	4 (23.5) white 4 (23.5) Other	White p = 1.000; 0.650 (0.022-9.900)		0 (0) Other	4 (22.2) Other	White p = 1.000; 0.875 (0.029-14.394)		6 (21.4) Other	4 (33.3) White 3 (25) Other
Fthnicity	9 (21.9) Hispanic	19 (35 2) Hispanic	Other $p = 0.175$; 0.478 (0.171-1.314) P = 0.241;	-			Other p = 0.611; 0.500 (0.080-2.876)				Other p = 0.558; 2.125 (0.367-12.790)				Other p = 0.496; 0.00 (0.826-4.852)				Other p = 0.622; 0.00 (0.826-6.544)			
Incurence	32 (78.1) Not	35 (64.8) Not	0.518 (0.185 - 1.431)	Ethnicity	3 (15.7) Hispanic 16 (84.3) Not	6 (27.2) Hispanic 16 (72.8) Not	P = 0.611; 0.500 (0.080-2.876)	Ethnicity	5 (33.3) Hispanic 10 (66.7) Not	4 (19) Hispanic 17 (81) Not	P = 0.558; 2.125 (0.367-12.790)	Ethnicity	0 (0) Hispanic 6 (100) Not	4 (23.5) Hispanic 13 (76.5) Not	P = 0.496; 0.00 (0.826-4.852)	Ethnicity	0 (0) Hispanic 5 (100) Not	4 (22.2) Hispanic 14 (77.8) Not	P = 0.622; 0.00 (0.826-6.544)	Ethnicity	6 (21.4) Hispanic 22 (78.6) Not	3 (25) Hispanic 9 (75) Not
insurance	4 (9.76) Medicare	6 (11.1) Medicare	2.077 (0.830-5.243)	Insurance	14 (73.6) Medicaid	13 (59.1) Medicaid	Medicaid p = 0.514; 1.938 (0.429-9.054)	Insurance	9 (60) Medicaid	15 (71.4) Medicaid	Medicaid p = 0.720; 0.600 (0.117-3.009)	Insurance	4 (66.7) Medicaid	11 (64.7) Medicaid	Medicaid p = 1.000;	Insurance	4 (80) Medicaid	11 (61.2) Medicaid	Medicaid p = 0.800; 2.545 (0.181-72.787)	Insurance	19 (67.9) Medicaid	7 (58.4) Medicaid
	10 (24.3) Other	22 (40.8) Other	Medicare p = 1.000; 0.865 (0.187-3.818)		1 (5.2) Medicare 4 (21.2) Other	3 (13.6) Medicare 6 (27.3) Other	Medicare p = 0.709; 0.352 (0.013-4.468)		2 (13.3) Medicare	1 (4.8) Medicare	Medicare $p = 0.760;$		1 (16.7) Medicare	0 (0) Medicare	1.091 (0.109-12.091) Medicare		0 (0) Medicare	1 (5.5) Medicare	Medicare $p = 1.000;$ 0 00 (0 957-75 061)		3 (10.7) Medicare	1 (8.3) Medicare
BMI	$32,43\pm 8,02,(19,49-$	30 43 ± 7 31 (17 8-	Other p = 0.147; 0.469 (0.173-1.252) P = 0.2167	-			Other p = 0.923; 0.711 (0.132-3.703)		4 (20.7) Other	5 (23.8) Other	Other $p = 1.000;$		1 (16.7) Other	6 (35.3) Other	Other p = 0.736; 0.367 (0.013-5.001)		. (20) 5		Other $p = 0.981$;		6 (21.4) Other	4 (33.3) Other
	52.9 [n = 39]	49.53) [n = 53]		BMI	33.33 ± 7.10 (23.4-52. [n = 18]	.9) 31.66 ± 8.83 (19.49- 48.76) [n = 21]	P = 0.5238	BMI	$30.52 \pm 8.20 (19.49 - 42.04)$	$32.94 \pm 6.85 (23.4-52.9)$	1.164 (0.198-6.765) P = 0.3581	BMI	31.7 ± 3.03 (29.1-36.02 [n = 5]	2) $33.55 \pm 7.76 (23.4-52.9)$ [n = 16]	P) $P = 0.6146$	BMI	31.70 ± 3.03 (29.1-	33.54 ± 7.76 (23.4-52.5	P = 0.6146	BMI	34 37 ± 8 06 (20 9-52 9)	$28.55 \pm 6.27 (19.49)$
Presence of diabetes mellitus	7 (17.1) Yes 34 (82.9) No	7 (12.9) Yes 47 (87.1) No	P = 0.789; 1.382 (0.389-4.925)	Presence of diabetes	4 (21.1) Yes	3 (13.6) Yes	P = 0.831:	-	43.94) [n = 14]	[n = 20]				• // 0) •			36.02)	[n = 16]		Diff	[n = 27]	40.36)
Most recent HbA1c	7.72 ± 2.25 (5.7-11.4) [n=5]	9.01 ± 1.03 (7.9-10) [n=4]	P = 0.3234	mellitus	15 (78.9) No	19 (86.4) No	1.689 (0.258-11.603)	Presence of diabetes mellitus	1 (6.7) Yes 14 (93.3) No	4 (19) Yes 17 (81) No	P = 0.568; 0.304 (0.012-3.574)	Presence of diabetes mellitus	2 (33.3) Yes 4 (66.7) No	2 (11.8) Yes 15 (88.2) No	P = 0.567; 3.750 (0.256-60.813)	Presence of diabetes mellitus	1 (20) Yes 4 (80) No	3 (16.7) Yes 15 (83.3) No	P = 1.000; 1.250 (0.039-23.062)	Presence of diabetes mellitus	6 (21.4) Yes 22 (78 6) No	[n = 11] 0 (0) Yes 12 (100) No
Smoking Status	22 (53.6) Yes 19 (46.4) No	30 (55.5) Yes 24 (44.5) No	P = 1.000; 0.926 (0.378-2.269)	Most recent HbA1c	6.95 ± 1.20 (6.1-7.8) [n=2]	8.23 ± 2.90 (5.7-11.4) [n=3]	P = 0.6090	Most recent HbA1c	7.6 (n=1)	6.95 ± 1.20 (6.1-7.8) (n=2)		Most recent HbA1c	[n=0]	$\begin{array}{c} 6.95 \pm 1.20 \ (6.1, 7.8) \\ [n{=}2] \end{array}$		Most recent HbA1c	[n=0]	$6.95 \pm 1.20 (6.1-7.8)$ [n=2]		Most recent HbA1c	$6.8 \pm 1.06 (5.7-7.8)$	[n=0]
Presence of cardiac	6 (14.6) Yes	4 (7.4) Yes	P = 0.424;	Smoking Status	10 (52.6) Yes 9 (47.4) No	12 (54.5) Yes 10 (45.5) No	P = 1.000; 0.926 (0.226-3.789)	Smoking Status	8 (53.3) Yes	10 (47.6) Yes	P = 1.000; 1 257 (0 273-5 853)	Smoking Status	4 (66.7) Yes 2 (33.3) No	7 (41.2) Yes 10 (58.8) No	P = 0.549; 2.857 (0.300-31.763)	Smoking Status	3 (60) Yes	8 (44.4) Yes	P = 0.913;	Smoking Status	[n=4]	7 (58 3) Ves
Presence of	11 (26.8) Yes	7 (12.9) Yes	P = 0.149;	Presence of cardiac disease	2 (10.5) Yes 17 (89.5) No	4 (18.2) Yes 18 (81.8) No	P = 0.804; 0.529 (0.057-4.099)	Presence of cardiac	2 (13.3) Yes	2 (9.5) Yes	P = 1.000;	Presence of cardiac	1 (16.7) Yes	1 (5.9) Yes	P = 1.000 3 200 (0 070 151 484)	Presence of cardiac	2 (40) No 1 (20) Yes	10 (55.6) No 1 (5.5) Yes	1.875 (0.179-22.018) P = 0.907;	Shioking Status	14 (50) Yes 14 (50) No	5 (41.7) No
Presence of renal	30 (73.2) No 3 (7.3) Yes	47 (87.1) No 2 (3.7) Yes	P = 0.751;	Presence of pulmonary disease	y 3 (15.7) Yes 16 (84.3) No	8 (36.4) Yes 14 (63.6) No	P = 0.259; 0.328 (0.055-1.783)	disease Presence of pulmonary	13 (86.7) No 4 (26.7) Yes	19 (90.5) No 4 (19) Yes	1.462 (0.124-17.371) P = 0.893:	Presence of pulmonary	1 (16.7) Yes	3 (17.6) Yes	P = 1.000;	disease	4 (80) No	17 (94.5) No	4.250 (0.090-212.957)	Presence of cardiac disease	5 (17.9) Yes 23 (82.1) No	1 (8.3) Yes 11 (91.7) No
disease	38 (92.7) No	52 (96.3) No	2.053 (0.260-18.661)	Presence of renal	1 (5.2) Yes	2 (9.1) Yes	P = 1.000; 0.556 (0.018-8.940)	disease	11 (73.3) No	17 (81) No	1.545 (0.249-9.742)	disease	5 (83.3) No	14 (82.4) No	0.933 (0.030-15.806)	disease	4 (80) No	5 (16.7) Yes 15 (83.3) No	P = 1.000; 1.250 (0.039-23.062)	Presence of pulmonary disease	7 (25) Yes 1 (75) No	4 (33.3) Yes 8 (66.7) No
Presence of peripheral arterial disease	3 (7.3) Yes 38 (92.7) No	2 (3.7) Yes 52 (96.3) No	P = 0.751; 2.053 (0.260-18.661)		10 ()4.0)110	20 (90.9)110	0.000 (0.010 0.040)	Presence of renal disease	1 (6.7) Yes 14 (93.3) No	1 (4.8) Yes 20 (95.2) No	P = 1.000; 1.429 (0.035-58.146)	disease	5 (83.3) No	17 (100) No		Presence of renal disease	0 (0) Yes 5 (100) No	1 (5.5) Yes 17 (94.5) No	P = 1.000; 0.00 (0.957-75.061)	Presence of renal disease	3 (10.7) Yes 25 (89.3) No	0 (0) Yes 12 (100) No
History of intervention for	1 (33.3) Yes 2 (66.7) No	1 (50) Yes 1 (50) No	P = 1.000; 0.500 (0.001-61.914)	Presence of peripheral arterial disease	1 2 (10.5) Yes 17 (89.5) No	1 (4.5) Yes 21 (95.5) No	P = 0.895; 2.471 (0.153-74.989)	Presence of peripheral	0 (0) Yes	2 (9.5) Yes	P = 0.622;	Presence of peripheral	2 (33.3) Yes	0 (0) Yes		Presence of peripheral	1 (20) Yes	1 (5.5) Yes	P = 0.907;		20 (0) 10) 110	12(100)110
disease	[n=3]	[n=2]		History of interventior for peripheral arterial discuss	n 1 (50) Yes 1 (50) No	0 (0) Yes 1 (100) No		History of intervention	15 (100) No (n=0)	19 (90.3) No 1 (50) Yes		History of intervention	1 (50) Yes	[n=0]		arterial disease History of intervention	4 (80) No	17 (94.5) No	4.250 (0.090-212.957)	Presence of peripheral arterial disease	3 (10.7) Yes 25 (89.3) No	0 (0) Yes 12 (100) No
Presence of psychiatric disorder	9 (21.9) Yes 32 (78.1) No	13 (24.1) Yes 41 (75.9) No	P = 1.000; 0.887 (0.302-2.578)	uisease	[n=2]	[n=1]		for peripheral arterial disease		1 (50) No		for peripheral arterial disease	1 (50) No			for peripheral arterial disease	0 (0) No	1 (100) No		History of intervention for peripheral arterial	1 (33.3) Yes 2 (66.7) No	(n=0)
Presence of neurological disease	7 (17.1) Yes 34 (82.9) No	2 (3.7) Yes 52 (96.3) No	P = 0.064; 5.353 (0.931-39.971)	Presence of psychiatric disorder	c 4 (21.1) Yes 15 (78.9) No	5 (22.7) Yes 17 (77.3) No	P = 1.000; 0.907 (0.162-4.979)	Presence of psychiatric	e 1 (6.7) Yes	(n=2) 4 (19) Yes	P = 0.568;	Presence of psychiatric	2 1 (16.7) Yes	3 (17.6) Yes	P = 1.000;	Presence of psychiatric	[II-1]	3 (16.7) Yes	P = 1.000;	disease	[n=3]	
Method of Arrival	15 (36.6) EMS 26 (63.4) Walk-in	17 (31.5) EMS 37 (68.5) Walk-in	P = 0.762; 1.256 (0.489-3.227)	Presence of neurological disease	4 (21.1) Yes 15 (78.9) No	3 (13.6) Yes 19 (86.4) No	P = 0.831; 1.689 (0.258-11.603)	disorder Presence of	14 (93.3) No	17 (81) No	0.304 (0.012 - 3.574) P = 0.568:	disorder Presence of	5 (83.3) No	14 (82.4) No	0.933 (0.030-15.806) P = 0.567:	disorder Presence of	4 (80) No	15 (83.3) No	1.250 (0.039-23.062)	Presence of psychiatric disorder	6 (21.4) Yes 22 (778.6) No	2 (16.7) Yes 10 (83.3) No
Associated Musculoskeletal	5 (12.2) Yes 36 (87.8) No	6 (11.1) Yes 48 (88.9) No	P = 1.000; 1.111 (0.267-4.561)	Method of Arrival	8 (42.1) EMS 11 (57.9) Walk-in	7 (31.8) EMS 15 (68.2) Walk-in	P = 0.721; 1.558 (0.362-6.809)	neurological disease	14 (93.3) No	17 (81) No	0.304 (0.012-3.574)	neurological disease	5 (83.3) No	15 (88.2) No	3.750 (0.256-60.813)	neurological disease	3 (60) No	16 (88.9) No	5.333 (0.339-101.781)	Presence of neurological disease	6 (21.4) Yes 22 (778.6) No	0 (0) Yes 12 (100) No
Injury Mechanism of Injury	35 (85.4) Fall	47 (87) Fall	Fall p = 1.000; 0.869 (0.234-3.251)	Associated Musculoskeletal	1 (5.3) Yes 18 (94 7) No	4 (18.2) Yes	P = 0.434; 0 250 (0 010-2 845)	Method of Arrival	5 (33.3) EMS 10 (66.7) Walk-in	8 (38.1) EMS 13 (61.9) Walk-in	P = 1.000; 0.813 (0.162-4.011)	Method of Arrival	2 (33.3) EMS 4 (66.7) Walk-in	8 (47.1) EMS 9 (52.9) Walk-in	P = 0.918; 0.563 (0.052-5.380)	Method of Arrival	2 (40) EMS 3 (60) Walk-in	8 (44.4) EMS 10 (55.6) Walk-in	P = 1.000; 0.833 (0.072-8.834)	Method of Arrival	9 (32.1) EMS	6 (50) EMS
	1 (2.4) Sports 5 (12.2) Other	2 (3.7) Sports 5 (9.3) Other	Sports p = 1.000; 0.650 (0.023-9.636)	Injury Mechanism of Injury	17 (89.5) Fall	18 (81.8) Fall	Fall p = 0.804;	Associated Musculoskeletal Injury	3 (20) Yes 7 12 (80) No	1 (4.8) Yes 20 (95.2) No	P = 0.370; 5.000 (0.381-139.228)	Associated Musculoskeletal Injury	0 (0) Yes 6 (100) No	1 (5.9) Yes 16 (94.1) No	P = 1.000; 0.00 (0.957-56.859)	Associated Musculoskeletal Injury	0 (0) Yes 7 5 (100) No	1 (5.5) Yes 17 (94.5) No	P = 1.000; 0.00 (0.957-75.061)	Associated	19 (67.9) Walk-in	6 (50) Walk-in
			Other $p = 0.902;$ 1 261 (0 211 5 074)		0 (0) Sports	1 (4.5) Sports	1.889 ($0.244-17.413$) Sports p = 1.000;	Mechanism of Injury	12 (80) Fall	19 (90.5) Fall	Fall p = 0.683; 0.421 (0.041-3.825)	Mechanism of Injury	6 (100) Fall	14 (82.4) Fall	Fall	Mechanism of Injury	5 (100) Fall	15 (83.3) Fall	Fall	Musculoskeletal Injury	26 (92.9) No	9 (75) No
Lauge Hansen Classification	11 (26.8) PER	6 (11.1) PER	PER p = 0.087; 2.933 (0.879-10.100)		2 (10.5) Other	3 (13.7) Other	0.00 (0.976-20.619) Other p = 1.000;		1 (6.7) Sports	0 (0) Sports	Sports		0 (0) Sports	1 (5.9) Sports	Sports p = 1.000; 0.00 (0.957-56.859)		0 (0) Sports	1 (5.6) Sports	Sports p = 1.000; 0.00 (0.957-75.061)	Mechanism of Injury	25 (89.3) Fall 0 (0) Sports	9 (75) Fall 1 (8.3) Sports
	30 (73.2) SER	45 (83.3) SER 1 (1.8) PAB	SER p = 0.343; 0.545 (0.180-1.638)	Lauge Hansen	4 (21.1) PER	7 (31.8) PER	0.745(0.075-6.548) P = 0.672;	-	- (100) out	2 (10) 0110	Other p = 1.000; 1.462 (0.124-17.371)		0(0) Other	2 (11.7) Other	Other p = 0.971; 0.00 (0.913-14.070)			_()	Other p = 1.000; 0.00 (0.913-18.905)		3 (10.7) Other	2 (16.7) Other
		2 (3.8) SAD	PAB p = 1.000; (0.989-22.847)	Classification	15 (78.9) SER	15 (68.2) SER	1.750 (0.348-9.165)	Lauge Hansen Classification	4 (26.7) PER 11 (73.3) SER	6 (28.6) PER 15 (71.4) SER	P = 1.000; 1.100 (0.199-6.205)	Lauge Hansen Classification	0 (0) PER 6 (0) SER	6 (35.3) PER 11 (64.7) SER	P = 0.250; 0.00 (0.739-2.524)	Lauge Hansen Classification	0 (0) PER 5 (100) SER	6 (33.3) PER 12 (66.7) SER	P = 0.355; 0.00 (0.739-3.411)			
			SAD p = 0.600; 0.0 (0.979-5 452)	Open vs. Closed	2 (10.5) Open 17 (89.5) Closed	0 (0) Open 22 (100) Closed		Open vs. Closed Injury	7 0 (0) Open	2 (9.5) Open	P = 0.622;	Open vs. Closed Injury	7 0 (0) Open 6 (100) Closed	2 (11.7) Open 15 (88.3) Closed	P = 0.971; 0.00 (0.913-14.070)	Open vs. Closed Injury	7 0 (0) Open 5 (100) Closed	2 (11.1) Open	P = 1.000;	Lauge Hansen Classification	8 (28.6) PER 20 (71.4) SER	3 (25) PER 9 (75) SER
Open vs. Closed Injury	2 (4.8) Open 39 (95.2) Closed	0 (0) Open 54 (100) Closed		Podiatric vs.	17 (89.5) Podiatric	12 (54.5) Podiatric	P = 0.035;	Podiatric vs.	15 (100) Closed 6 (40) Podiatric	19 (90.5) Closed	0.00 (0.944-6.008)	Podiatric vs.	6 (100) Podiatric	12 (70.6) Podiatric	P = 0.355;	Podiatric vs.	5 (100) Closed 5 (100) Podiatric	13 (72.2) Podiatric	P = 0.472;			
Podiatric vs. Orthopedic Consult	29 (70.7) Podiatric 12 (29.3) Orthopedic	31 (57.4) Podiatric 20 (42.6) Orthopedic	P = 0.438; 1.559 (0.595-4.117)	Orthopedic Consult	2 (10.5) Orthopedic	10 (45.5) Orthopedic	7.083 (1.110- 57.437)	Orthopedic Consult	9 (60) Orthopedic	3 (14.3) Orthopedic	0.111 (0.016-0.680)	Podiatric vs.	6 (100) Podiatric	5 (29.4) Orthopedic 12 (70.6) Podiatric	P = 0.355;	Orthopedic Consult	0 (0) Orthopedic	5 (27.8) Orthopedic	0.00 (0.783-4.601)	Open vs. Closed Injury	2 (7.1) Open 26 (92.9) Closed	0 (0) Open 12 (100) Closed
Podiatric vs. Orthopedic ORIF	28 (70) Podiatric 12 (30) Orthopedic			Podiatric vs. Orthopedic ORIF	17 (89.5) Podiatric 2 (10.5) Orthopedic	11 (52.4) Podiatric 10 (47.6) Orthopedic	P = 0.027; 7.727 (1.195-63.201)	Podiatric vs. Orthopedic ORIF	6 (40) Podiatric 9 (60) Orthopedic	18 (85.7) Podiatric 3 (14.3) Orthopedic	P = 0.012; 0.111 (0.016-0.680)	Orthopedic ORIF	0 (0) Orthopedic	5 (29.4) Orthopedic	0.00 (0.783-3.411)	Orthopedic ORIF	0 (0) Orthopedic	5 (27.8) Orthopedic	0.00 (0.783-4.601)	Inpatient vs. Outpatient Treatment	17 (60.7) Inpatient	2 (16.7) Inpatient 10 (83.3) Outpatient
	[n=40]							Inpatient vs. Outpatient Treatment	0 (0) Inpatient 15 (100) Outpatient	19 (90.5) Inpatient 2 (9.5) Outpatient	P = 0.000; 0.00 (0.472-0.070)	Outpatient Vs.	0 (0) Outpatient	4 (23.5 Outpatient	P = 0.496; 0.00 (0.826-4.852)	Inpatient vs. Outpatient Treatment	5 (100) Inpatient 0 (0) Outpatient	14 (77.8) Inpatient 4 (22.2) Outpatient	P = 0.622; 0.00 (0.826-6.544)		()	() - apaton
Inpatient vs. Outpatient Treatment	19 (46.3) Inpatient 22 (53.7) Outpatient	0 (0) Inpatient 54 (100) Outpatient		Time to OR (days)	1.53 ± 1.17 (0-5)	13.06 ± 5.13 (7-27) [n = 17]	P < 0.0001; (-13.999.08)	Time to OR (days)	13.87 ± 4.91 (8-27)	2.05 ± 1.99 (0-7)	P <0.0001	Time to OR (days)	2.67 ± 1.37 (1-5)	3.24 ± 4.44 (0-15)	P = 0.7636	Time to OR (days)	2.6 ± 1.52 (1-5)	3.22 ± 4.31 (0-15)	P = 0.7572	Time to OR (days)	4.42 ± 4.96 (0-15) [n=24]	12.08 ± 7.40 (1-27)
Time to OR (days)	6.97 ± 6.84 (0-27) [n=36]			Total length of stay (days)	3.58 ± 2.41 (1-9)	1.25 ± 0.5 (1-2) (n=4)	P = 0.0727;	Total length of stay (davs)	1.33 ± 0.58 (1-2) (n=3)	3.45 ± 2.42 (1-9) (n=20)	P = 0.1530	Total length of stay (days)	6.5 ± 2.07 (5-9)	2 ± 0.79 (1-3)	P < 0.0001	Total length of stay (days)	7.0 ± 1.87 (5-9)	2.11 ± 0.90 (1-4)	P < 0.0001	Total length of stay (days)	3.61 ± 2.45 (1-9) [n=18]	1.06±0.89 (1-3) [n=5]
Total length of stay (days)	3.17 ± 2.37 (1-9)			Post-operative length	2.05 ± 1.68 (0-6)	$1.25 \pm 0.5 (1-2)$	(-0.23-4.89) P = 0.3630; (0.00, 2.50)	Post (1)		20+1.05 (0.0)	D - 0.5040	Post-operative length o	f 3.83 ± 1.94 (1-6)	1.24 ± 0.56 (0-2)	P < 0.0001	Post-operative length	4.44 ± 1.52 (3-6)	1.22 ± 0.55 (0-2)	P < 0.0001	Post-operative length of	$2.11 \pm 1.71 (0.6)$	1.02 ± 0.45 (1-2)
Post-operative length of stay (days) Disposition	1.91 ± 1.56 (0-6) 7 (17.9) SNF		P = 0.060:	Disposition	5 (26.3) SNF	[n=4] 2 (10) SNF	(-0.99-2.60) P = 0.363;	of stay (days)	1.55 ± 0.58 (1-2) (n=3)	$2.0 \pm 1.65 (0.6)$ (n=20)	r = 0.5040	Disposition	4 (66.7) SNF	2 (11.7) SNF	P = 0.036;	Disposition	4 (80) SNF	2 (11.1) SNF	P = 0.012:	Disposition	[n=18] 6 (22.2) SNF	[n=5] 1 (8.3) SNF
	32 (82.1) Home [n=39]	50 (96.2) Home [n=52]	5.469 (0.947-41.016)		14 (73.7) Home	18 (90) Home	3.214 (0.440-28.592)	Disposition	1 (6.7) SNF 14 (93.3) Home	5 (23.8) SNF 16 (76.2) Home	P = 0.365; 0.229 (0.009-2.528)		2 (33.3) Home	15 (88.3) Home	15 (1.122-325.452)		1 (20) Home	16 (88.9) Home	32 (1.657-1425.712)		21 (77.8) Home [n=27]	11 (91.7) Home

<u>Table 1</u>: This table provides a comparison of demographic variables between subjects who underwent ORIF vs. those that did not. Interestingly, no statistically significant results were observed of the studied variables.

Table 2: This table evaluates those subjects who underwent ORIF with a comparison to those that did so as an outpatient vs. an inpatient procedure. Those who had the procedure performed on an inpatient basis were more likely to be treated by the Foot and Ankle Surgery Service (89.5% vs. 10.5%; p=0.035) and to have a lower mean time to the OR (1.53 vs. 13.06 days; p<0.0001).

Table 3: This table evaluates those subjects who underwent ORIF, and compared those that did so greater than 7 days following injury vs. those who were treated in 7 days or less following injury. Those who had the procedure performed in \leq 7 days were more likely to be treated by the Foot and Ankle Surgery Service (85.7% vs. 14.3%; p=0.012) and to have the procedure performed on an inpatient basis (90.5% vs. 9.5%; p=0.00) with a mean time to the OR of 2.05 days.

<u>Table 4</u>: This table evaluates subjects who underwent ORIF, and compared those that had a total length of stay greater than 3 days versus those with a total length of stay \leq 3 days. Those who had a total length of stay \leq 3 days were more likely to have a shorter post-operative length of stay (1.24 vs. 3.83 days; p<0.0001) and were less likely to be discharged to a SNF (11.7% vs. 66.7%; p=0.036).

<u>Table 5</u>: This table evaluates subjects who underwent ORIF, and compared those that had a total post-operative length of stay greater than 2 days versus those with a total post-operative leng of stay ≤ 2 days. Those who had a total postoperative length of stay ≤ 2 days were more likely to have a shorter total length of stay (2.11 vs. 7 days; p<0.0001) and were less likely to be discharged to a SNF (11.1% vs. 80%; p=0.012).

Table 6: This table evaluates subjects who underwent ORIF, and compared those that were operated on by the Foot and Ankle Surgery Service vs. the Orthopedic Surgery Service. Those who were operated on by the Foot and Ankle Surgery Service were more likely to have a higher BMI (34.37 vs. 28.55; p=0.0392), more likely to have been treated on an inpatient basis (60.7% vs. 16.7% p=0.027), and have a shorter time to OR (4.42 vs. 12.08) days; p=0.0008)

Results 1.800 (0.374-8.814) Black p = 0.730Results are displayed in the adjacent tables. 1.615 (0.339-7.874) White p = 0.878; 0.667 (0.122-3.690) Subjects who were treated on an inpatient basis Other p = 1.000; 0.818 (0.133-5.316) were more likely to have been operated on by P = 1.000;0.818 (0.133-5.316) the Foot and Ankle Surgery service and have a Medicaid p = 0.828 1.508 (0.302-7.551) time to OR of less than 7 days. Subjects with a Medicare p = 1.000; 1.320 (0.100-36.490) total length of stay greater than 3 days were Other p = 0.690; 0.545 (0.096-3.110) P = 0.0392; (0.3046-11.3376) more likely to be discharged to a skilled nursing facility. No other substantial clinical differences were observed with any comparison P = 1.000; 0.926 (0.378-2.269) with respect to type of fracture, subject demographic information and subject co-P = 0.424; 2.143 (0.485-9.910)

morbidities.

P = 0.149; 2.462 (0.771-8.027)

Discussion

As with any scientific investigation, critical readers are encouraged to review the study design and results and reach their own conclusions, while the following represents our interpretation of the specific results. As scientists we also never consider data to be definitive, but do think that these results are worthy of attention and future investigation.

Subjects who underwent ORIF were more frequently evaluated and managed by the Foot and Ankle Surgery Service. Those patients who underwent ORIF by the Foot and Ankle Surgery Service were statistically significantly more likely to have been managed on an inpatient basis and with an overall shorter time to OR as compared to those managed by the Orthopedic Surgery Service. This may speak to different management paradigms between services or individual physician preference based on severity of patient injury, comorbidities, or insurance limitations. This descriptive and comparative information might be beneficial for the development of quality improvement and/or performance improvement initiatives at hospitals in the US with respect to the treatment of ankle fractures, especially as it pertains to health care costs and patient functional outcomes.

References

Stull JD, Bhat SB, Kane JM, Raikin SM. Economic burden of inpatient admission of ankle fractures. Foot Ankle Int. 20 Sep: 38(9):997-1004] Naumann MG, Sigurdsen U, Utvag SE, Stavem K. Associations of timing of surgery with postoperative length of stay,

mplications, and functional outcomes 3-6 years after operative fixation of closed ankle fractures. Injury. 2017 Jul;

Lovy AJ, Dowdell J, Keswani A, Koehler S, Kim J, Weinfeld S, Joseph D. Nonoperative versus operative treatment o splaced ankle fractures in diabetics. Foot Ankle Int. 2017 Mar; 38(3):255-260. 4] Qin C, Dekker RG, Blough JT, Kadakia AR. Safety and outcomes of inpatient compared with outpatient surgical ocedures for ankle fractures. J Bone Joint Surg Am. 2016 Oct 19; 98(20): 1699-1705.

P = 1.000;1.364 (0.188-11.907)

P = 0.476; 0.474 (0.095-2.306) P = 0.297; 0.231 (0.022-2.129) Fall p = 0.499; 2.778 (0.354-22.398) Sports p = 0.658; 0.00 (0.975-7.490) Other p = 1.000;0.600 (0.065-6.15 P = 1.000;0.833 (0.135-4.799)

P = 0.027;7.727 (1.195-P = 0.0008P = 0.0904; (-0.35-4.37) P = 0.2585; (-0.72-2.54) P = 0.554;3.143 (0.295-77.042)