In Vivo Kinematics of the Healthy Ankle Using Weight-Bearing CT

James Clancy, DPM ${ }^{1}$, Richard Obert, MS ${ }^{2}$, Mark Myerson, MD ${ }^{3}$, Mathew Anderle, MPH ${ }^{4}$, Daniel Lee, MEng ${ }^{4}$, Laura Brinker, DPM ${ }^{4}$
${ }^{1}$ Orthopedic Center of Palm Beach County, ${ }^{2}$ Focus Medical Design \& Development, ${ }^{3}$ Steps2Walk, 4Paragon 28, Inc.

Statement of Purpose

The goal of this study was to determine the three-dimensional 3D), weight-bearing kinematics of the healthy ankle during simulated gait using a novel 3 D registration technique.

Literature Review

There is considerable debate in the literature regarding the path of tibiotalar motion.
Isman and Inman defined the talocrur
one with its apex pointed medially. ${ }^{1}$
Siegler also found that the talus could be modeled as a truncated cone; however, they determined that its apex is located laterally. ${ }^{\text {. }}$ Others have reported that the axis of rotation changes throughout plantar and dorsi-flexion. ${ }^{3,4}$
A variety of techniques have been used to determine the in vivo motions of the healthy ankle during gait. ${ }^{5}$,, ,
These studies conclude that during gait, the dominant rotation of the ankle is in the sagittal plane (dorsi/plantar flexion) with lesser amounts of internal/external and varus/valgus rotation.

Methods

After IRB approval, 17 subjects with healthy right ankles (9 male, 8 female) underwent weight-bearing CT scans during three phases of a truncated portion of simulated gait (Table 1, Figures CT scans were segmented (Materialize Mimics v21, Leuven, Belgium) to isolate tibia, fibula, and talus bones in early stance (ES, after heel-strike), mid-stance (MS), and late stance (LS, before toe-off) and imported into a CAD package for analysis (SolidWorks 2017, Waltham, MA).
All subjects were previously deemed to have a healthy right ankle by the surgeon investigator (JC) via radiographic evaluation and questionnaire.
Table 1: Subject demographics.

	Height (in.)	Weight (Ib)	Age (years)
Average	67.1	162.2	34.9
Standard Deviation	4.1	37.8	10.2

Methods-Continued

Figure 2: Weight-bearing CT images for a subject at early stance (left), midstance (middle) and late stance (right).

figure 3: Volume render of a subject during late stance.
Landmarks were established on the mid-stance bones and measurements were obtained for flexion, internal/externa rotation, and varus/valgus (inversion/eversion)
Models of the mid-stance bone were registered to the surface models of the tibia and talus of the other stance positions using lobal registration
bones registered matrices between the positions of the mid-stance bones registered in early and late stance were determined for each bone and stance combination.
hese transformations were then applied within the CAD system to the mid-stance bones that contained the coordinate system formation and the angular measurement process was repeated for each stance, using the landmarks established in the mid stance scan (Figures 4).

Figure 4: Frontal (top) and sagittal (bottom) views of relative positions of three-dimensional models of the distal tibia and talus for a subject
positioned at early stance (A, E), mid-stance (B, F), late stance (C, G) and positioned at early stance (A, E), mid-stance (B, F), late stance (C, G) and a

Methods-Continued

Data analysis was conducted at an $\alpha=0.05$
Repeated measures ANOVA was used to analyze differences between phases of gait for each angular parameter.
Each measurement parameter at each increment was compared against a hypothesized value of zero. Parametric methods were primarily used, however nonparametric analysis was performed, where appropriate.

Results

On average, for ES, MS and LS , respectively, subjects experienced (talus relative to the tibia, Figure 5):
$-4.6^{\circ}, 4.1^{\circ}$, and 14.1° of dorsi (+) / plantar (-) flexion $-4.3^{\circ},-3.7^{\circ}$, and -1.0° of internal $(-)$ / external (+) rotation - $1.3^{\circ}, 1.0^{\circ}$, and 2.0° of varus $(-) /$ valgus $(+)$ rotation Each flexion angle was determined to be significantly different from zero, including the mid-stance (Table 2). This is consistent with previous results in the literature, which show mid-stance flexion angles in the range of $5^{\circ}-10^{\circ}$ of dorsiflexion. ${ }^{8}$ The internal/external rotation angle departs significantly from zero in ES and MS
significantly less at $L S$ compared to $\mathrm{MS}(P=013)$ and $E S(P<001)$. For varus/valgus, only plantar-flexion had a significant difference from 0°, with a tendency towards valgus.

Figure 5: Average anatomic angular measures by stance phase (\pm standard
deviation). Statistically different pairwise deviation). Statistically different pairwise comparisons are noted with a bracket and P-value.

Results-Continued

Table 2: Mean and median rotation values with corresponding P -value

Measurement Parameter	Mean / (Median)	P -value
Dorsi (+ / / Plantar (-) Flexion Angle (${ }^{\circ}$)		
Early Stance	(-6.15)	0.009*
Mid-Stance	-4.11	0.003*
Late Stance	(11.56)	<0.001*
Internal (-) / External (+) Rotation Angle (${ }^{\circ}$)		
Early Stance	-4.28	<0.001*
Mid-Stance	-3.49	<0.001*
Late Stance	-1.02	0.352
Varus (-) / Valgus (+) Angle (${ }^{\circ}$)		
Early Stance	1.27	0.043*
Mid-Stance	0.97	0.102
Late Stance	2.03	0.161

Analysis \& Discussion

- Healthy joint motion is driven by the forces acting on the joint and the geometry of the articulating surfaces.
The results of the current study indicate that the healthy ankle joint experiences varying, tri-axial rotation during gait. Therefore, the tibiotalar interface must be conducive to multiple
axes of rotation.
Implants designed to replicate healthy ankle kinematics should allow for varying axes of rotation, which may lengthen implant life.
Weight-bearing CT technology can be used to help understand joint motion in the foot and ankle.
he limitations of this study include: restricted or altered motion due to imaging constraints, inconsistencies of foot positioning due to foot size and a small sample size that lacked diversity.

References

Disclosure

[^0]
[^0]: This study was paid for by Paragon 28, Inc. Three authors as indicated above are employed by Paragon 28 , Inc.

