

Statement of Purpose

• The purpose of this study was to compare immediate internal fixation with primary wound closure to temporary fixation/stabilization with delayed fixation and wound closure protocols for management of open ankle fractures from rotational mechanisms.

Methodology

- With IRB approval, a retrospective study of all open ankle fractures from the institutional trauma database from October 1999 to August 2017 at an inner-city Level I US trauma center were assessed.
- Only fractures caused by a primary rotational mechanism as described by Lauge-Hansen were included to compare similar osseous fracture types and soft tissue injuries.^{1,2}
- Exclusion criteria were: open pilon fracture, ankle fracture from a blast or crush injury, ballistic injury, previously treated open ankle fracture, chronic open ankle fracture, open ankle dislocation without fracture, and less than six months follow-up.
- This left 88 patients with Gustilo-Anderson (GA) type I, II, and IIIA fractures who were included in the study.
- Cases were divided into two cohorts: immediate internal fixation with primary wound closure (EARLY) and temporary fixation/stabilization with delayed fixation and wound closure (STAGED) (Figure 1).
- The decision to perform EARLY versus STAGED treatment was attending dependent.

Figure 1. Flow diagram of patient selection and primary results

www.PosterPresentations.com

Early Definitive Care is as Effective as Staged Treatment Protocols for Open Ankle Fractures from Rotational Mechanisms: A Retrospective Cohort Study

¹Daniel L. Peterson DPM, AACFAS; ²Christopher J. Kennedy DPM; ³Joseph M. Wilkinson DPM, AACFAS; ²Meg Schuurman, BMSc; ²Muhammad T. Padela, MD, MSc; ²Rahul Vaidya, MD, FRCS; ²Andreea Geamanu, PhD

¹Fellow, North Jersey Reconstructive Foot and Ankle, Department of Podiatric Surgery, Lyndhurst, NJ ²Detroit Medical Center, Department of Orthopedics, Detroit, MI ³PeaceHealth Medical Group, Department of Orthopedics, Florence, OR

Literature Review

- Open ankle fractures are relatively uncommon injuries ranging from 1.5-4.5% of all ankle fractures.^{3,4}
- The tenets of care for open ankle fractures include early antibiotics, expedient and adequate debridement, operative reduction and fixation, and wound closure.
- Many authors advocate a staged protocol for these injuries to allow for demarcation of nonviable soft tissue and to prevent sealing in contaminating organisms.^{5,6}
- Treatment of open fractures has evolved over time due to regimented antibiotics, improvements in fixation, and an emphasis on soft tissue handling.⁵
- The incidence of infection in GA type III injuries has been reported to be as high as 50%.⁷
- Recent studies suggest that GA type IIIA injuries in tibia fractures may be comparable to GA type I and II injuries when performing immediate internal fixation with primary wound closure.^{6,8}
- This may decrease the requirement for subsequent debridement and soft-tissue procedures, decrease joint stiffness, shorten hospital stay, reduce costs, reduce amputations, decrease time to union, expedite rehabilitation, and reduce infection.^{6,9,10}

Table 1 Pre-Operative Bivariate Analysis of Open Ankle Fractures

	EARLY n=40	STAGED n=48	P-Value
Patient Demographics			
Age (mean)	43.8 (± 15.6; 22 to 82)	44.8 (± 15.7; 20 to 80)	0.72
Gender			0.09
Male	17 (42.5%)	30 (62.50%)	
Female	23 (57.5%)	18 (37.50%)	
Comorbidities			
Diabetes	7 (17.5%)	8 (16.7%)	0.92
Tobacco use	16 (40.0%)	20 (41.7%)	0.87
ASA Class			0.40
1	2 (5.0%)	7 (14.6%)	
2	24 (60.0%)	22 (45.8%)	
3	12 (30.0%)	16 (33.3%)	
4	2 (5.0%)	3 (6.3%)	
Mechanism of Injury			0.09
Motor vehicle collision	21 (52.5%)	31 (64.6%)	
Fall from stairs/ground	18 (45.0%)	14 (29.2%)	
Fall from height	0	3 (6.3%)	
Unknown	1 (2.5%)	0	
Polytrauma	9 (22.5%)	11 (22.9%)	0.96
l'ime to OR (Hours)	10.0 (± 5.5; 1 to 24)	10.7 (± 12.7; 0 to 62)	0.10
Fracture Characteristics			
Fracture type			0.68
Unimalleolar	15 (37.5%)	17 (35.4%)	
Bimalleolar	23 (57.5%)	26 (54.2%)	
Trimalleolar	2 (5.0%)	5 (10.4%)	
Weber Classification			0.17
A	4 (10.0%)	10 (20.8%)	
В	19 (47.5%)	26 (54.2%)	
с	17 (42.5%)	12 (25.0%)	
Lauge Hansen Classification			0.14
SER 1, 2, 3, 4	0, 1 (2.5%), 1 (2.5%), 9 (22.5%)	1 (2.1%), 0, 1 (2.1%), 10 (20.8%)	
PER 1, 2, 3, 4	0, 1 (2.5%), 2 (5.0%), 8 (20.0%)	1 (2.1%), 0, 1 (2.1%), 3 (6.3%)	
PAD 1, 2	0, 4 (10.0%)	6 (12.5%), 3 (6.3%)	
SAD 1, 2, 3	2 (5.0%), 4 (10.0%), 8 (20.0%)	3 (6.3%), 3 (6.3%), 16 (33.3%)	
Gustilo-Anderson Classification			0.0079
ц П	0 (10.0%) 14 (25.0%)	1 (2.1%) 0 / 19 004)	
IIIA	20 (50.0%)	38 (79.2%)	

Table 2

Infectio Reopei Length

Table 3

I&D v Hardw Bone Hardw Skin g Local I&D + I&D + I&D +

I&D + Total

Table 4 Clinical Analysis of Patients with ≥1 Year Follow-up

Pain $\leq 3/$ $\geq 4/$ Ambul Un Limp Osteoa Mi Mo

Results

- Pre-operative risk factors between EARLY versus STAGED cohorts were found to have similar distributions (Table 1).
- Overall, six patients were diagnosed with infection, corresponding to an incidence of 6.8% (6/88). No significant difference in infection requiring reoperation was found between EARLY versus STAGED cohorts (p = 0.68) (Table 2).
- The STAGED cohort had a statistically longer length of hospital stay versus the EARLY cohort (p =0.0003) (Table 2).
- Number of reoperations was significantly greater in the STAGED cohort as compared to the EARLY cohort (p < 0.0001) (Table 3).
- Of the six patients with infection, the mean number of reoperations was significantly greater than patients without infection (6.33 vs 1.32 respectively; p =0.0016).
- Clinical outcomes were compared for patients (52) with greater than 12 months of follow-up (Table 4). STAGED patients had more pain rated at $\geq 4/10$ than EARLY patients at the latest follow-up (p < 0.04) (Table 4).

Post-Operative Bivariate Analysis of Open Ankle Fractures			
	EARLY n=40	STAGED n=48	P-Value
Infection requiring reoperation (n, %)	2 (5.0%)	4 (8.3%)	0.68
Reoperation (mean; SD; range)	0.6 (± 1.0; 0 to 4)	2.5 (± 2.9; 0 to 13)	< 0.0001
Follow-up (months, mean; SD, range)	14.0 (± 16.6; 2 to 78)	16.6 (± 22.9; 1 to 105)	0.57
Length of stay (days, mean: SD, range)	6.4 (± 4.7; 2 to 25)	10.6 (± 7.1; 3 to 35)	0.0003

Type of Re-Operative Procedure

Ji Re-Operative i locedure			
	EARLY	STAGED	
vith wound vac	4	36	
vare removal	13	24	
graft	1	4	
vare revision	4	6	
raft	1	9	
flap	0	1	
- delayed internal fixation	0	10	
external fixation	0	16	
- delayed primary closure	0	15	
primary closure	2	0	
Reoperations	25	121	

	EARLY n=25	STAGED n=27	P-Value
			0.04
/10	23 (92%)	18 (66.7%)	
/10	2 (8%)	9 (33.3%)	
lation			0.40
limited	12 (48%)	9 (33.3%)	
nited	13 (52%)	18 (66.7%)	
			0.96
	15 (60%)	16 (59.3%)	
s	10 (40%)	11 (40.7%)	
arthritis			0.57
ld/joint space narrowing	17 (68%)	16 (59.3%)	
oderate/severe	8 (32%)	11 (40.7%)	

Analysis and Discussion

• Open ankle fractures occur from a wide array of injury types through multiple mechanisms with variable energy levels.^{3,6,7,11} Published literature on this topic is inconsistent regarding pre- and postoperative measures. Even the very definition of what constitutes an open ankle fracture is not clearly defined.^{5,6}

• To compare cohorts with similar osseous fractures and comparable soft tissue injuries, it was fundamental to include only open ankle fractures resulting from rotational mechanisms.

• To the authors knowledge, this is the first study to compare an EARLY versus a STAGED protocol for open ankle fractures from a single mechanism of action (rotational).

• The overall incidence of infection within our study was 6.8%. We found no significant difference in infection rates of patients treated with an EARLY versus a STAGED protocol

• Length of hospital stay was significantly less in patients in the EARLY cohort (6.38 vs 10.63; p = 0.0003). In addition, patients within the EARLY cohort had significantly fewer mean number of reoperations (p < 0.0001).

• The EARLY cohort reported less pain than the STAGED cohort (p < 0.04) in patients followed for > 12 months.

• In conclusion, our study showed that early definitive treatment as compared to a staged protocol for GA type I, II, and IIIA open ankle fractures from

rotational mechanisms has similar rates of infection, leads to a shorter hospital stay, has fewer surgical interventions, and leads to less pain.

References

1. Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, et al. Fracture and dislocation classification compendium - 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma. 2007 Dec 1;21(10 Suppl):S1-133. 2. Lauge-Hansen N. Fractures of the ankle. II. Combined experimental-surgical and experimentalroentgenologic investigations. Arch Surg. 1950 May 1;60(5):957-85.

3. Bugler KE, Clement ND, Duckworth AD, White TO, McQueen MM, Court-Brown CM. Open ankle fractures: who gets them and why? Arch Orthop Trauma Surg. 2015 Mar 18;135(3):297–303. 4. Ovaska MT, Madanat R, Honkamaa M, Mäkinen TJ. Contemporary demographics and complications of patients treated for open ankle fractures. Injury. 2015 Aug 17;46(8):1650–5.

5. Bugler KE, Clement ND, Duckworth AD, et al. Controversies in the management of open fractures. open Orthop J. 2014 Jun 27;8:178–84.

6. Hulsker CCC, Kleinveld S, Zonnenberg CBL, Hogervorst M, van den Bekerom MPJ. Evidencebased treatment of open ankle fractures. Arch Orthop Trauma Surg. 2011 Nov 29;131(11):1545–53. 7.Sexton SE. Open fractures of the foot and ankle. Clin Podiatr Med Surg. 2014 Oct 1;31(4):461–86. 8.Hong-Chuan W, Shi-Lian K, Heng-Sheng S, Gui-Gen P, Ya-Fei Z. Immediate internal fixation of open ankle fractures. Foot & ankle Int. 2010 Nov 1;31(11):959–64.

9. DeLong WG, Born CT, Wei SY, Petrik ME, Ponzio R, Schwab CW. Aggressive treatment of 119 open fracture wounds. J Trauma. 1999 Jun 1;46(6):1049–54.

10. Bowen TR, Widmaier JC. Host classification predicts infection after open fracture. Clin Orthop Relat Res. 2005 Apr 1;(433):205–11.

11. Halawi MJ, Morwood MP. Acute Management of Open Fractures: An Evidence-Based Review. Orthopedics. 2015 Nov 1;38(11):e1025–33.